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Abstract A novel technique for particle tracking veloci-

metry is presented in this paper to overcome the issue of

overlapping particle images encountered in the flows with

high particle density or under volumetric illumination

conditions. To achieve this goal, algorithms for particle

identification and tracking are developed based on

current methods and validated with both synthetic and

experimental image sets. The results from synthetic image

tests show that the particle identification algorithm is able

to resolve overlapped particle images up to 50 % under

noisy conditions, while keeping the root mean square peak

location error under 0.07 pixels. The algorithm is also

robust to the size changes up to a size ratio of 5. The

tracking method developed from a classic computer vision

matching algorithm is capable of capturing a velocity

gradient up to 0.3 while maintaining the error under

0.2 pixels. Sensitivity tests were performed to describe the

optimum conditions for the technique in terms of particle

image density, particle image sizes and velocity gradients,

also its sensitivity to errors of the PIV results that guide the

tracking process. The comparison with other existing

tracking techniques demonstrates that this technique is able

to resolve more vectors out of a dense particle image field.

1 Introduction

Particle tracking velocimetry (PTV) has long been a

valuable technique to investigate small-scale flow struc-

tures, dating back to the time of Da Vinci (Gharib et al.

2002). In the last several decades, computational advances

have made it possible to automate PTV processes, initially

by obtaining quantitative measurements based on streaking

motions of tracer particles, as summarized by Agui and

Jimenez (1987). Algorithmically, progress was made in the

1990s with the introduction of two-frame (rather than four-

frame) particle tracking routines by researchers such as

Baek and Lee (1996), whereby particles were matched

based on their ‘‘match probability’’. This probability was

calculated using neighboring particles and some heuristics

based on maximum velocities and quasi-rigidity condi-

tions over small areas of the flow. While the approach
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significantly improved over nearest-neighbor approaches, it

was still limited to fairly low gradient flows. Around the

same time, super resolution methods were introduced

(Keane et al. 1995) based on the autocorrelation of double-

pulse PIV images to guide the particle matching routine.

This method was augmented with the use of Kalman filter

prediction by Takehara et al. (2000), which increased the

robustness of the super resolution method. Cowen and

Monismith (1997) introduced a technique known as hybrid

particle tracking, which used the results from two-frame

PIV analysis to guide the particle tracking process. Upon

initially obtaining PIV results, the algorithm then used

these results as a guide to search specific areas in the

second image for a single particle, which was then con-

sidered the match to the particle from the first frame. It

essentially constituted a modified nearest-neighbor search,

using the added knowledge of approximate displacements

from PIV. Further advancements along this line were made

by Kim and Lee (2002) by combining the hybrid PIV–PTV

idea with the match probability concept. Such an approach

allowed variations in the maximum velocity along with

variable rigidity conditions depending on the local flow

properties, thus expanding the range of the match proba-

bility algorithm.

In recent years, other methods have been developed. One

is the deterministic annealing approach (Stellmacher and

Obermayer 2000) that attempts to minimize a cost function

relating the particle displacements and an assumed trans-

formation function operating between the two frames.

Another is the feature tracking method based on Delaunay

Tessellations (Song et al. 1999), which matches triangles

rather than individual particles, taking advantage of the fact

that 2-D shapes are identifiable while points are not. Other

recently improved algorithms include the variational

approach of Ruhnau et al. (2005), which finds the vector

field as a whole rather than resolve individual vectors, and

thus satisfies a minimization problem while including

known smoothness properties of the flow. Mikheev and

Zubtsov (2008) modified the original PTV method of

Uemura et al. (1989) by taking into account the particle size

when determining matches, and dubbed the method

enhanced PTV (EPTV). Another method, originally devel-

oped for 3-D flows (Ponchaut 2005; Ponchaut and Mouton

2005), involves forming a first guess of the velocity field

based on a weighted average between a correlation tech-

nique and a simple particle tracking technique. Appropriate

weights are assigned to these vectors so that the correlation

approach has more influence where it is more accurate (i.e,

where the particle image density is high) and the simple

particle tracking has more influence where the density is

low. Finally, particle tracking uses this hybrid velocity field

to create local criteria for the velocity vectors. Brevis et al.

(2011) proposed an integrated cross-correlation/relaxation

algorithm. The combined algorithm first uses a cross-cor-

relation process to obtain an initial solution and further

refined the results by the relaxation algorithms in the zones

where the cross-correlation scheme shows low reliability.

The performance of both of the individual and the inte-

grated algorithms is compared and analyzed using synthetic

and experimental images. The results show improved

overall performance by the integrated algorithm at high

velocity gradient and heterogeneous seeding cases. Panday

et al. (2011) proposed an ant colony optimization algorithm

for matching image pairs of stereo PIV images. Although

the tracking algorithm could potentially be used for tracking

image pairs over time, it is used to match stereo image pairs

from the two camera views instead of temporal tracking.

Shindler et al. (2011) proposed a PTV technique based on a

modified polar coordinate system similarity method (PCSS)

for tracking. The enhanced algorithm shows improved

performance for cases that have inhomogeneous seeding

density distributions.

One of the advantages PTV has over PIV technique is

the sensitivity to high velocity gradient. While PIV has

advanced to a very robust and accurate level, there is still

the issue of spatial resolution. With advanced weighted

iterative techniques, it has been shown that spatial wave-

lengths as small as twice the grid node distance are

detectable (Nogueira et al. 2005). In this study, they also

found that the error associated with wavelengths of this

size approaches 100 %. For errors on the order of 10 %, the

smallest wavelengths detectable are larger by a factor of

4–8. On the other hand, PTV is only limited by the mean

spacing of particles (which goes as the square root of

particle image density, defined as the number of particles

per image area in pixels squared). In addition, PIV suffers

from an inherent averaging effect over the area of the

interrogation windows, which decreases the maximum

velocity gradients that can be measured (Scarano 2003).

PTV does not result in this severe averaging effect, since

individual particles are tracked. With kriging interpolation

(Gunes et al. 2006), it is possible to reconstruct accurate

velocity gradients on a uniform grid basis from nongrid

PTV results.

Comparing to PIV algorithms that analyze cluster of

particle images in each interrogation window, the perfor-

mance of a particle tracking algorithm depends on their

ability to identify particles. In most macroscale experi-

ments, it has been shown that the optimized particle image

size for either PIV or PTV is about 2–4 pixels in diameter.

For microscale studies, due to the restrictions of volumetric

illumination and high magnification, the particle image size

can be significantly larger. To fully utilize the high spatial

resolution feature of the PTV approach, the particle density

in the imaging area should be as high as possible. Thus,

overlapping particles become an important issue when
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identifying particle locations. One popular approach to

resolving this issue is to start from a local intensity maxi-

mum and apply a Gaussian fit to locate the peak with sub-

pixel accuracy. Both Gaussian surface fits and Gaussian

line fits (Cowen and Monismith 1997; Marxen et al. 2000;

Ohmi and Li 2000; Mikheev and Zubtsov 2008; Brady

et al. 2009) have been used. Specifically, Marxen et al.

(2000) found that Gaussian line fits performed as well as a

surface fit with much lower computational time provided

the image noise was low. A dynamic threshold binarization

method proposed by Ohmi and Li (2000) and modified by

Mikheev and Zubtsov (2008) provides a way to overcome

the variations due to particle sizes and background noise

level while preserving most of the particle images. In the

case of high image noise, the Gaussian surface fit per-

formed better, at the cost of longer computational time.

Brady et al. (2009) proposed an improved 4-point Gaussian

estimator that reduces the error of traditional 3-point

Gaussian fit by accounting for pixel discretization effects

using integral formulations. Approaches including the use

of the CLEAN algorithm (Stellmacher and Obermayer

2000) and a Gaussian mask correlation (Takehara and Etoh

1999; Saga et al. 2003) apply a ‘‘model image’’ of the

particles to the original image to find the maximum of

convolution or cross-correlation, thus determining the peak

location. The performance of particle mask correlation

method (PMCM) tested by Takehara and Etoh (1999)

shows that it is possible to use a fixed size of the particle

mask for finding a range of particle sizes, and that the

normalized critical distance to separately identify two

particles is about unity for identical particles but increases

when the intensity difference increases. Shindler et al.

(2011) proposed a new feature-based particle identification

method based on an optical flow equation. Instead of the

intensity peak of a particle image, the barycenter of a

feature is used as the location of the tracer.

The general assumption for most peak finding algorithms

is that each particle results in one peak of a particle image

and the intensity distribution can be approximated by a 2-D

Gaussian function (Adrian and Yao 1985). Thus, a 1- or 2-D

Gaussian fit can be applied to the pixels in the vicinity of a

local intensity maximum to locate the particle center. As

pointed out by Ponchaut (2005), this assumption no longer

holds when the particles severely overlap. Marxen et al.

(2000) performed simulations of overlapping particles with

least-square surface fits and 3-point line fits based on this

assumption, and the results showed a steep rise in the errors

when the particle separation distance approaches the particle

diameter. The summation of multiple particle images can

result in fewer peaks, where these peaks deviate from the

particles’ true locations. Even if the peak number is the same

as the particle number, the Gaussian fit based on the single

particle assumption could lead to greater location errors

since the overlap region will add bias error to the peak

location toward the nearby particle. The PMCM can resolve

the two overlapping particles up to a minimum critical

separation distance, thus providing a way to estimate the

presence of nearby particles. However, this critical distance

is still larger than the particle separation distance that would

cause two particles to sufficiently merge so that they would

form a single peak, and it increases even more when the

intensity differences between particles increase. The cascade

correlation method (Angarita-Jaimes et al. 2009) suggests

that instead of applying the cross-correlation once with the

particle mask image, a cascade of cross-correlation opera-

tions makes the correlation peak narrower, thus decreasing

the critical distance. Their simulation data show a significant

improvement when compared with the PMCM algorithm,

reducing the critical distance to below Rayleigh’s resolution

limit. The particle location is then determined by performing

a 5-point 2-D Gaussian fit to find the peak location in the

cross-correlation plane. The CCM algorithm provides an

efficient way to separate overlapping particles and is easy to

implement. However, the peak locations found from the

correlation image plane may suffer additional errors. The

peaks in the correlation image can be distorted due to noise,

and the sub-pixel peak-fitting algorithms may introduce bias

errors toward integer values due to discretization of the

particle images. A well-known example is the peak-locking

error encountered in typical PIV applications (Nogueira

et al. 2001a, b; Liao and Cowen 2005).

In the present work, a novel and robust particle tracking

technique is proposed to improve the overlap particle

identification and tracking performance. The ideas of Scott

and Longuet-Higgins (1991) used to solve the problem of

visual correspondence have been adapted and modified to

fit the concept of particle matching and to create a robust

tracking algorithm. This technique and its implementation

are described in Sect. 2. A modified particle identification

method, based on a mixed algorithm of cascade cross-

correlation method (CCM, proposed by Angarita-Jaimes

et al. 2009) and Gaussian surface fitting, is developed

to improve the accuracy of particle identification for

overlapping particles, which is discussed in Sect. 3. The

synthetic images and experimental results are discussed in

Sect. 4. Finally, the conclusions are presented in Sect. 5.

2 Algorithms

2.1 Vision-based feature association

A long-standing problem in the field of computer vision

has been the ability to correlate features in images, such as

sequential images in time, to discern motion. In many sit-

uations, the features in the images can be very distinct,
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making the problem fairly easy to solve. In some situations,

however, the corresponding features may be too similar in

appearance (such as particle images) to allow simple

matching. In the field of computer vision, the attempt to

match many similar features has led to two principles

known as the ‘‘principle of proximity,’’ and the ‘‘principle

of exclusion’’ (Scott and Longuet-Higgins 1991). The

proximity principle states that a shorter-distance feature

match is more likely than a long-distance match. This

reduces to the nearest-neighbor approach taken early on in

the evolution of particle tracking algorithms. The exclusion

principle eliminates the possibility of several features in

one frame corresponding to a single feature in another

frame. Together, these principles make up much of what

determines a match to human vision. While other works

have been proposed require the exclusion principle to

be applied explicitly (Ullman 1979), Scott and Longuet-

Higgins determined that conditions placed on the problem

statement can enforce this principle without explicitly

programming for it. The approach of Scott and Longuet-

Higgins was to first develop the proximity matrix, G,

Gij ¼ e�r2
ij=2r2 ð1Þ

where rij represents the distance between features Ii and Jj,

where I and J refer to the first and second images,

respectively, and the subscripts i and j are the feature

indices. In the exponential denominator, r is a character-

istic distance.

Given the above proximity matrix, the next task is to

determine a pairing matrix, P that maximizes the inner

product, P : G ¼ trace PT Gð Þ: The method taken by Scott

and Longuet-Higgins is to find the singular value decom-

position (SVD) of G, such that

G ¼ TDU ð2Þ

By the nature of the SVD, T and U are orthogonal

matrices. The entries of the D matrix (which is purely

diagonal) can be replaced with ones, resulting in the

identity matrix, I. Substituting this for the D matrix results

in the pairing matrix P,

P ¼ TIU: ð3Þ

This can be shown to be the matrix with the maximum

inner product with the proximity matrix, having rows

which are mutually orthogonal. An element of Pij can be

thought of as the measure of correspondence between

features Ii and Jj. A large value of Pij indicates a large

element of Gij, which is a Gaussian weighted distance, and

therefore, Pij provides an overall least-squared distance

mapping between features Ii and Jj. This provides the

principle of proximity. The orthogonality of P means there

can be only one maximum element per row or per column

and thus insures one-to-one mapping between particles in

different images. This provides the principle of exclusion.

Therefore, if an entry of the pairing matrix, Pij, is the

maximum value of both the row i and the column j, then

features Ii and Jj are considered matches. Further

mathematical details can be found in Scott and Longuet-

Higgins (1991) and Schonemann (1966).

This technique clearly has applications in the field of

particle matching where both the principle of proximity

and the principle of exclusion play major roles. Also, the

method is very simple to implement once the particle

locations are known as it only requires a SVD, matrix

multiplication, and a maximum value search. However,

there are significant problems associated with this tech-

nique when considering its use for particle tracking. The

first issue concerns particle losses, or unmatchable features,

due to in-plane losses, out-of-plane losses, or misidentifi-

cation of particles. These so-called rogue points can corrupt

the matching results. The second major problem is that the

algorithm requires, as an input, a single characteristic

length on which to base the proximity matrix.

Another known problem of the Scott and Longuet-

Higgins method is the inability to match particles that

travel through a large rotation between frames. This clearly

has implications in the field of PTV, especially in studying

vortical flows. However, as noted in Luo and Hancock

(2002), the critical angle is on the order of 20�. While this

is a limiting factor in some applications, PTV rotation

levels should never be as high as 20� if the experiment is

properly performed. Based on the Scott and Longuet-Hig-

gins method, a modified method by Pilu (1997) is proposed

to improve the matching results. The similarity between

features is taken into account together with the proximity

and exclusion principles. This produces a much more

selective pairing matrix. This is done by calculating the

normalized cross-correlation coefficient Cij of the feature

pair:

Cij ¼
PW

u¼1

PW
v¼1 IAðu; vÞ � �IAð Þ � IBðu; vÞ � �IBð Þ

W2 �
P
ðIAÞ �

P
ðIBÞ

ð4Þ

where �IA, �IB are the average, and
P
ðIAÞ,

P
ðIBÞ are the

standard deviation of all pixel intensities of the W 9 W sub-

window area IA and IB, each centered on feature i and j,

respectively. Cij varies from -1, for completely uncorrelated

matches, to 1 for identical matches. Therefore, a new

proximity matrix G
0
ij can be defined as follows:

G
0

ij ¼ G � e�ðCij�1Þ2=2c2 ð5Þ

The new term added to the original proximity matrix is a

Gaussian weighted correlation coefficient, in which c is a

factor to control the speed of decay of the weighting of the
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similarity term that is set to 0.4 per Pilu (1997). The range

of Cij is from -1 to 1, so the new proximity matrix G0 still

ranges from 0 to 1, and the principle of proximity is

maintained since Gij is larger when the features i and j are

closer, or the correlation value Cij is larger. This modified

algorithm greatly improves the ability of the method to

deal with rogue points, producing more valid matches than

the original method.

In the original Scott and Longuet-Higgins method, the

choice of r is arbitrary, but is suggested to reflect the

average displacement of the features. Based on the

experimental results, Pilu (1997) suggests that r should

roughly match the actual displacement. For implementa-

tion of PTV, it is a natural choice to use PIV results as a

guide. Since PIV results are still a regional average over a

certain interrogation window size, data interpolation is

used to provide more accurate estimate of the local r
value.

The tracking algorithm proposed in this paper is based

on the original Scott and Longuet-Higgins (1991) method,

with the modification made by Pilu (1997). The imple-

mentation of the method is hybridized with PIV results, and

an iterative scheme with outlier detection (Duncan et al.

2010) is used to increase the robustness and accuracy of the

method. The details of the implementation are discussed in

Sect. 3.2.

2.2 Particle location identification

Based on CCM algorithm, an improved algorithm is

proposed here to fully utilize the advantage of the CCM

algorithm and avoid the potential error discussed above. Each

PTV image can be considered as a summation of an unknown

number N of particle images, each having a different loca-

tion, intensity and radius assuming a Gaussian shape distri-

bution, plus the noise signal mainly due to thermal noise of

the CCD sensor. Thus, the intensity I(j, k) at pixel (j, k) is

Iðj; kÞ ¼
XN

i¼1

ðI0Þi � e
Xjðj;kÞ2

2r2
i ð6Þ

where (I0)i is the peak intensity of the ith particle image,

Xi(j, k) is the distance from the pixel to the particle center

(xci, yci), and ri is the representative radius of the particle

image. The particle identification process finds a solution

I
0ðj;kÞ ¼

XN

i¼1

ðI 00Þi � e
Xjðj;kÞ2

2r
02
i ð7Þ

so that the difference between I(j, k) and I0(j, k) for all

pixels in the image is minimized in a least-square sense.

Note that the number of particles, N, in traditional particle

identification algorithms is assumed to be equal to the

number of peaks in the image, and I(j, k) is independent for

each particle i under the assumption that the particle image

density is sufficiently low. Thus, for each particle i, the

equation can be reduced to

Iiðj; kÞ ¼ Iie

X
0
i
ðj;kÞ2

2r
02
i ð8Þ

in order to make the 3- or 5-point Gaussian fit work.

Therefore, with overlapping particles, the key is to estimate

N as accurately as possible. Since the CCM algorithm

provides a way to separate the overlapping particle peaks,

N can be estimated by counting the number of peaks in the

last cross-correlation image from the CCM algorithm. The

CCM algorithm first calculates the cross-correlation image

R1 between the original particle image I and the model

particle mask image IM,

where the model particle mask image is defined as an

intensity image of size m 9 n containing a particle image

with a Gaussian shaped intensity profile which follows

Eq. (8). The operation is then repeated to generate a cas-

cade correlation image R2 by replacing I in Eq. (9) with

correlation image R1 and reducing the particle mask image

radius r by 1 pixel. In the original CCM algorithm, the

peak locations in the R2 plane are used to indicate the

particle locations. In the present method, the number of

peaks, N, is counted instead. With the Nin Eq. (6) known,

the least-square fitting can be performed to find the best

estimate of the particle locations in the original image

I. This modification eliminates errors produced during the

cross-correlation operation, such as the peak-locking

effect.

R1ðu; vÞ ¼
Puþm=2

i¼u�m=2

Pvþn=2

j¼v�n=2
I i; jð Þ � �Ið Þ IM i; jð Þ � �IMð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPuþm=2

i¼u�m=2

Pvþn=2

j¼v�n=2
I i; jð Þ � �Ið Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPuþm=2

i¼u�m=2

Pvþn=2

j¼v�n=2
�IM i; jð Þ � �IMð Þ2

q ð9Þ
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3 Implementation

3.1 Modified CCM algorithm

In practice, the computational cost of this method for a

typical PTV image containing thousands of particles is

high. The intensity of each particle considered only extends

to ±4 ri due to the e-2 intensity level drop of the Gaussian

curve. This indicates that the image can be broken into

small sections to reduce the computational cost without

sacrificing accuracy. The raw image is broken down into

small blob images, each containing an unknown number of

particles. A blob is defined as a set of connected pixels. As

an example, in Fig. 1, the binary image contains three

blobs. The blob identification process starts here with

Otsu’s method (Otsu 1979), which segments the fore-

ground (blobs) and background image (noise) by finding

the threshold to minimize the variance between the two

classes of pixels. The connected foreground pixels are then

sorted into blobs. Each of the blobs is then considered as an

independent image containing an unknown number of

particles described by Eq. (6). The number of particles in

each blob is then determined by the improved CCM

algorithm described in the paragraph below.

Expanding the original idea of the CCM method, the

cross-correlation operation in Eq. (9) is now performed k

times, with a gradually decreasing particle mask size. Each

time a cross-correlation is performed, the particle mask

size (the representative radius r) shrinks by 1 pixel until it

reaches a user determined minimum radius. This modifi-

cation has two purposes: one is to reduce the critical sep-

aration distance between particles even further since the

correlation is narrower. The other goal is to increase the

ability to detect a wider range of particles, since the results

from Takehara and Etoh (1999) show that the correlation

coefficients drop much more quickly when the particle size

is smaller. Thus, a sweep of radius from large to small

provides more chances to detect the heavily overlapped

small particles. The number of peaks N is calculated by

counting the local maximain the last correlation plane Rk

which are greater than a threshold value. Once the number

of particles N is estimated, a nonlinear least-square fit is

performed by minimizing v2:

v2 ¼
Xj¼m;k¼n

j¼1;j¼1

Iðj; kÞ �
XN

i¼1

ðI0Þi � e
Xiðj;kÞ2

2r
02
i

" #2

ð10Þ

By solving the least-square fit problem, the location

(xi, yi), intensity (I0)i, and radius ri of each of the particles

in the blob can be found. This process is repeated for all the

blobs, and the final result is the summation of all the blob

results. The block diagram for the whole procedure is

shown in Fig. 2.

To verify the performance and robustness of the new

method, simulation tests are carried out on images of two

identical overlapped particles, which are together varied in

size, normalized separation distance, and noise types. Each

of the simulated particle images is generated using the

Gaussian intensity profile defined by Eq. (8), with fixed I,

xc, yc, and r. The simulated particle diameter, D, varies

from 4 to 20 pixels, is defined as the e-2 intensity level of

the Gaussian. D is equal to 4rP, which is the representative

radius of the particle image. The particle overlap ratio is

defined as (D - L)/D, where L is the separation distance

between the overlapped particles and D is the particle

diameter. The particle overlap ratio in the present tests

Fig. 1 Example of connected pixels forming blobs in a binary image

(reproduced from MATLAB�) Fig. 2 Process flow of the proposed particle identification algorithm
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varies from -150 to 50 %. The pixel intensities are then

the sum of the two particle images discretized by sampling

the Gaussian intensity profile. Two types of noise are tes-

ted: the Poisson noise and Gaussian noise. The Poisson

noise is used to simulate photon noise, which is the dom-

inant noise source of fluorescence microscopy encountered

in micro-PIV applications. The noise of each pixel follows

a Poisson distribution with a mean that is equal to the

intensity value I(i, j) of the pixel (i, j). Since the noise

increases as
ffiffiffiffiffiffiffiffiffiffiffiffi
Iði; jÞ;

p
the signal to noise ratio (SNR) can be

calculated as SNR ¼ Ic=
ffiffiffiffi
Ic

p
¼

ffiffiffiffi
Ic

p
, where Ic is the

intensity value at the particle image center. The Poisson

noise is added so that the signal-to-noise ratio varies from

10 to 25. The Gaussian noise is used to simulate the ther-

mal noise of an image sensor, which is a major noise

source in general PIV applications. The Gaussian noise

tested in this paper is added with a standard deviation of

2.5 and 5 % of the dynamic range of the model sensor,

which is set to 8 bits (0–255). The test for each case is

repeated 1,000 times, and the averaged results are reported.

Figure 3 shows the relationship between the separation

distances of two identical particles at different noise levels,

processed by the proposed method with D = 20 (rP = 5).

Figure 3a shows the results of the Poisson noise level

variation from no noise (SNR = infinity) to SNR = 10,

and these results are compared to the results of the original

CCM algorithm (Angarita-Jaimes et al. 2009). All the

averaged errors of the current method are below 0.2 pixels,

with an increasing trend when the overlap ratio increases

beyond 0 %. Compared with the original CCM algorithm,

the error increases to 0.154 pixels when the particle over-

lap ratio reaches 50 % for the case of SNR = 10, whereas

the original CCM method’s error increases beyond

0.5 pixels. Figure 3b shows the results of different

Gaussian noise level. They show similar trends as the

Poisson noise tests. For a 50 % particle overlap ratio, the

errors are within 0.25 pixels, and errors are within

0.09 pixels for all overlap ratios under 40 %.

Figure 4 shows the effects of particle size and Gaussian

noise level on the particle location errors. The particle sizes

vary from D = 4 to D = 20 and different particle overlap

ratios varying from 0 to 50 % are shown in different

curves. In Fig. 4a, the Gaussian noise level is 2.5 %, and at

high overlap ratios, the current algorithm fails to resolve

the overlapping particles when D \ 10, thus causing the

loss of data points at each curve. As particle size increases,

the maximum resolvable overlap ratio increases up to

50 %. This result is expected, since the CCM method

requires enough particle image spatial resolution to form

the individual correlation peaks. In Fig. 4b, the noise level

is 5 %. For larger particle sizes (D [ 6), the proposed

method is able to separate the overlapping particles with

pixel errors below 0.1 for overlap ratios of up to 40 %. For

50 % overlap, the resolvable particle size range is the

same, and the errors go up to 0.15 pixels due to the increase

in noise level. For small particles, the error comes from the

background pixels. Since the particle size is smaller, more

pixels containing only noise contribute to the total error of

the least-square fitting.

In practice, the size of seeding particles varies if poly-

disperse particles are used. Even if the seeding particles are

uniform in size, the particle image diameters can still

vary due to the out-of-focus effect of the optical system.

Furthermore, the laser light sheet has a Gaussian cross

section; thus, monodisperse particles image with an optical

system within the depth of field will still see a variation

due to the light sheet intensity variation and the position

of particles within the sheet. Fig. 5 shows the performance

of the proposed method with two particles of different

sizes overlapping at different Gaussian noise levels.

(a) (b)

Fig. 3 Averaged particle location error versus particle overlap ratio between two particles for a Poisson noise levels at infinity, 25 and 10.

b Gaussian noise levels at 2.5 and 5 %

Exp Fluids

123



The sizes of two particles are controlled by the particle

diameter ratio, DiaR. In this test, the smaller particle is

fixed to 4 pixels in diameter, while DiaR varies from 1 to 5.

The particle diameter D used here is the average of the two

particles. The detectable overlap ratio limit rises to 60 %

when DiaR is 4 or 5. This is due to the fact that the pro-

posed method separates overlap particles better with larger

particle diameter ratios. For DiaR smaller than 4 at 60 %

overlap, the algorithm cannot resolve the overlap; thus, no

data points are shown. The errors are under 0.1 pixels with

overlap ratios of up to 60 %, and for overlap ratios under

50 % the errors are lower than 0.07 pixels. The error

increases slightly for larger overlap ratios but insensitive to

DiaR changes. It is clear that the error increases as the

Gaussian noise level increases, and the algorithm begins to

fail to resolve both particles at all overlap ratios above

50 % at a 5 % Gaussian noise level. The error for

DiaR = 4 at 60 % overlap is slightly larger than

DiaR = 5. This is again due to the fact that the distance

between the peaks for the smaller particle is actually larger

for the same overlap ratio as the DiaR increases.

3.2 Modified vision matching

With both PIV data and particle locations obtained, the

particle matching algorithm can be implemented. To

account for the different characteristic displacements

present in the flow, twice the displacement magnitude at

each particle location (found by interpolating the PIV

results) is used as the characteristic displacement r. The

choice of the r value is based on the finding that the

tracking performance is better when r is an overestimate of

the true displacement [see section 5 of Scott and Longuet-

Higgins (1991)]. This displacement is then used to con-

struct the proximity matrix discussed above, which is then

processed via SVD to determine a pairing matrix. Each

entry, which is the maximum of its row and column, is

considered a match and is subject to validation.

(a) (b)

Fig. 4 Averaged particle location error versus particle diameter for different overlap ratios a 2.5 % Gaussian noise, b 5 % Gaussian noise

(a) (b)Fig. 5 Averaged particle

location error with various

particle diameter ratios and

noise levels. a 2.5 % Gaussian

noise versus particle overlap

ratio. b 5 % Gaussian noise

versus particle overlap ratio
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In order to make the feature matching technique descri-

bed in Sect. 2.1 more robust, two iterative approaches are

taken. The outer iteration, termed the particle removal loop,

focuses on removing already matched particles from the

possible matches list. In this manner, straightforward mat-

ches are made early on in the process, making the remaining

particle list easier to match later on. This iteration is in

accordance with the exclusion principle, since any particle

found to be a match in an early iteration can clearly not be a

match with another particle in future iterations. The second

iterative loop, termed the validation loop, takes place inside

the particle removal loop listed above. For each particle list,

the P matrix is created (by way of the SVD of the modified

proximity matrix G0 mentioned in Sect. 2.1) and maxima of

both rows and columns are sought. When such a maximum

is found, an outlier detection step is performed using the

modified universal outlier detection method (Duncan et al.

2010). If the entry in the P matrix is considered an outlier,

then it is set to zero. Upon the next iteration of the validation

loop, another entry in the P matrix may become the maxi-

mum of its row and column since the previous maximum

may have been removed. This loop ends when the P matrix

no longer changes, at which point the particle removal loop

moves on to the next iteration until completion (Fig. 6).

Since computational times are always of concern, some

approaches are taken to reduce the load to more reasonable

levels. It was found that breaking an image into smaller

windows results in significantly less computational effort

while retaining accuracy when the results are recombined.

Table 1 shows the PTV results from breaking a 512 9 512

image down into overlapping interrogation windows, where

a Dell Precision PWS490 Intel� Xeon� CPU E5345

@2.33 GHz with 16.00 GB of RAM was used for these

calculations. As the particle image density increases from

0.01 to 0.06, the computational time required to complete

particle tracking goes from O(n) to O(n2) where n is the side

length of each interrogation window, as shown in Fig. 7. At

the highest density, the computational cost drops from over

14 h down to 14 min, with a loss of only 12 matches out of

more than 15,000 by using a 64 9 64 interrogation window

rather than analyzing the full image all at once. These modest

losses are caused by the sensitivity of the SVD method to

outliers, which inevitably exist due to unmatchable particles

around the edges of an image or interrogation window. In the

interest of maintaining accuracy while reducing computation

time, all PTV runs recorded in Sect. 4 use 64 9 64 or

128 9 128 pixel interrogation windows overlapped by 50 %.

4 Experimental results of synthetic images

4.1 Generation of synthetic images

To test the particle matching capability of the algorithm,

the algorithm is first applied to simulated flows with known

SVD  feature 
association 
matching 

Checking 
existence of 

outliers

Outlier detection by 
median filtering

Remove matched 
particle pairs from 

to-match list  

Add matched pairs to 
found-match list

Save to the to-
match list for
comparison

Checking
changes of 
the to-match 

list

Output the final 
found-match list

Set Pij of the outlier 
matches to 0

Start
Fig. 6 Process flow of the

proposed tracking algorithm

Table 1 Effect on PTV results from breaking 512 9 512 images

with different particle image densities into overlapping windows

Window

size

64 9 64 128 9 128 256 9 256 512 9 512 Total no.

of particles

Matches (0.01) 2,592 2,592 2,592 2,592 2,611

Matches (0.03) 7,828 7,828 7,829 7,829 7,879

Matches (0.06) 15,384 15,395 15,397 15,396 15,512
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particle locations. Four parameters of each tracer particle

are generated: the peak intensity I, representative radius r,

and the peak location (xc, yc). The location is always ran-

domly generated, and the intensity and radius are either

fixed or randomly generated depending on the experi-

mental condition. The peak locations in the first image are

generated in a 512 9 512 image region, and then, peak

locations for the second particle image are calculated using

the simulated flow field. These form the particle lists for

the known particle location tests discussed in Sect. 4.2.

Each particle image is then generated in the same way as

the particle overlap test presented in Sect. 3.1. The inten-

sities at each pixel are summed from all the particles that

occupy the same pixel to form the test images. The for-

mation of the image in this manner is based on the

assumption that particle image is not only formed by direct

illumination but also due to fractions of light scattered from

other particles (Raffel et al. 1998). A detailed discussion of

the validation of this assumption is in Sect. 4.5. Since the

proposed tracking method is mainly based on point-set

matching and the simulated flow is assumed to be 2-D, the

variation of intensities between image pairs is assumed to

be zero.

The particle image density, previously defined as the

number of particles per image area, varies from 0.01 to

0.06. Since the proposed tracking algorithm is mainly

based on matching particle locations between 2-D image

frames, the particle image density is a more appropriate

measure of the performance than the actual particle seeding

density. One of the concerns when using a high particle

image density is the possibility of two-phase flow effects or

particles interacting with the flow and changing the flow

characteristics. Under a typical experimental condition

with laser light sheet thickness of 1 mm, tracer particle

diameters of 10 lm, an image area of 100 9 100 mm2, and

a 256 9 256 pixel particle image density of 0.06, the

volume fraction Up of particles is 2.09 9 10-7. Based on

the results shown in Figure 1 in Elghobashi (1994), effects

on turbulence for these conditions are negligible. Thus, the

particle image density range in the current tests is free from

the two-phase flow effect.

4.2 PTV results from moving wall images

A moving wall (Stokes’ first problem) synthetic flow is

chosen to verify the algorithm. All the image sizes are

512 9 512 pixels. The PTV algorithm is guided by PIV

results, which are obtained by processing sequential ima-

ges, with window-shifting and multi-passes resulting in

16 9 16 pixel interrogation windows with 50 % overlap,

and application of an outlier removal algorithm (Duncan

et al. 2010).

In order to quantify the accuracy of the new method, two

parameters suggested by Ruhnau et al. (2005) are used.

These are the yield and reliability, both given as percent-

ages. The yield (EY) is defined as the number of correct

vectors found by the tracking algorithm (n) divided by the

total number of particle pairs between the frames (v). The

reliability (ER) is defined as n divided by the total number

of vectors (correct and incorrect) identified by the tracking

algorithm (d):

EY ¼
n

v
ð11Þ

ER ¼
n

d
ð12Þ

To quantify correct matches in these cases, a 1-pixel

tolerance is used [EPTV: Mikheev and Zubtsov (2008),

NRX: Ohmi and Li (2000), VAR: Ruhnau et al. (2005)], as

well as a tighter 0.5-pixel tolerance to further quantify how

well the PTV algorithm performs. In addition, the particle

yield is defined as the number of particles found divided by

the total number of particles within the image. Finally,

RMS errors recorded in this section are a measure of the

error between actual displacements found with PTV and

the exact displacement from the known analytic solutions.

The synthetic images are generated using flow over a

moving wall with a velocity profile described as:

u ¼ U � 1� erf y=2
ffiffiffiffiffi
lt
p

ð Þð Þ: ð13Þ

Here, U = 10, l = 5, and t = 75, with simulation

results shown in Table 2. The particle image density is

0.03, and particle image diameters are 4 pixels. The

parameter, t, determines the sharpness of the velocity

gradient.

Table 2 shows the results from two tests. In the first,

the exact particle locations are known, that is, the parti-

cle identification method is skipped, and the exact

locations are fed directly into the matching algorithm.

Fig. 7 Computational time versus interrogation window length at

varying particle image densities
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In the second test, the particle location algorithm is used to

identify particles within the test images, and then, these

results are used in the matching algorithm.

It can be seen that the matching algorithm is capable of

excellent accuracy so long as it has accurate particle

locations. When errors due to particle location and over-

lapping particles are included, the displacement error rises

to 0.13 pixels and the reliability drops slightly from 99.7 to

98.3 % and 98.8 % for 1- and 0.5-pixel tolerances,

respectively. At this particle image density, there are a

significant number of particle images overlapped beyond

the range that the CCM algorithm can resolve, such that

76 % of particles within the image are identified. However,

almost 99 % of the matches made between these particles

are still accurate to within 0.5 pixels.

A scatter plot of PTV results from a pair of moving wall

images is shown in Fig. 8. The exact analytic solution is

overlaid as a solid white line. For another comparison, the

scattered PTV data are fitted to Stokes’ first problem,

where the parameters U, l, and t are varied to minimize the

sum of squared errors between the PTV data and the fit. Of

course in a real flow, the analytic solution would not be

known and a suitable curve would need to be chosen to fit

the data. However, this method is used in order to provide

another quantification of the error of the PTV results

without introducing errors from the choice of a suitable

fitting curve. The results from this curve fitting were

U = 10.01, l = 5.05, and t = 73.67. The R2 value for this

fit is 0.99999 and the average error of the three fitting

parameters was 0.98 % when compared to the true flow

parameters, which are U = 10, l = 5, and t = 75.

4.3 Error due to gradients, displacements, and PIV

guidance

We wish to gain some insight into this method’s perfor-

mance in high gradient flows and the impact that PIV error

can have on PTV results. It is known that PIV methods will

underestimate displacements in the presence of a flow

gradient because they examine a region of the flow in

which particles with larger displacements leave the inter-

rogation window more frequently than particles with

smaller displacements. A generic PTV algorithm that

examines individual particles will not suffer from these

errors. The current algorithm is a hybrid of PIV and PTV,

and thus, we wish to examine whether the strengths of PTV

are lost because of the reliance on PIV in choosing a

characteristic displacement to guide the matching algo-

rithm. To isolate the effects of gradients on the matching

algorithm, simple 1-D uniform shearing displacements

with known particle locations were generated, with the

resulting error, yield and reliability plotted in Fig. 9.

Additionally, the PIV guidance was replaced with guidance

from the exact analytic solution when calculating the

characteristic displacement, r (see Sect. 3.2). Finally, the

uniform shearing region in each image existed until a

maximum displacement was reached. Two different image

sets were generated, one with displacements capped at ±7

pixels and another at ±25 pixels.

A number of conclusions can be drawn from these plots.

First, the error tends to increase with increasing gradient.

When displacements are kept moderate (7 pixels or less),

the trend is roughly linear and the error of matches even

at the highest gradient value is below 0.3 pixels.

Table 2 PTV results using

exact particle locations and

results from particle finding

algorithm

Particle image density 0.03

Particle

found

Particle

yield

(%)

Matches

found

Match yield

with 1-pixel

tolerance (%)

Reliability

with 1-pixel

tolerance

(%)

Reliability

with 0.5-

pixels

tolerance (%)

RMSE

(pixels)

Known

particle

locations

– – 3,638 100 99.7 99.7 Machine

precision

Unknown

locations

3,638 76.6 2,786 99.6 98.3 98.8 0.129

Fig. 8 PTV velocity profile for moving wall flow compared with

analytic flow profile which is shown as a dashed white line

superimposed on the scattered PTV data
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For the larger 25-pixel displacements, the error increases

more rapidly, especially above 0.3 pixel/pixel gradients.

Similarly, the lower displacement shearing flow experi-

ences a modest drop in match yield compared with the

25-pixel displacement images. Finally, we can see that the

use of PIV as a guide for the PTV adds error to our

matching results while lowering the yield and reliability.

At low gradients, the additional error is small, and at the

highest gradients, PIV guidance adds between 0.1 and 0.2

pixels to the RMS error. In these tests, the PIV window

dimensions were 22 9 22 pixels, using window-shifting

and multi-passing routines. The reliability of matches

remains at or above 99 % in all cases. To obtain the best

performance from this matching algorithm, these high

pixel-based gradients should be avoided when possible by

reducing the time step between experimental images.

4.4 Effect of particle image density, diameter,

and intensity

In order to assess the effect of particle density, simulations

for particle image densities of 0.01 and 0.06 were also

performed (see Table 3), showing particle yields of 92

and 59 %, respectively. Improvements in reliability, match

yield, and RMS error can be seen at lower particle image

densities, while the opposite is true at higher densities. This

performance is a consequence of having fewer particles

that are overlapped beyond the range of those shown in

Fig. 4.

In order to better describe this PTV algorithm’s opti-

mum test conditions, plots of RMS error, match yield and

reliability versus particle image density are shown in

Fig. 10. Lower particle densities produce less error. How-

ever, more particle images are desirable to increase the

velocity data resolution. A good balance for this PTV

method appears to occur around a particle image density of

0.03–0.04. However, even at very high particle image

densities, the reliability of matches remains above 98 %.

Since larger particle image diameters give the particle

identification algorithm more data to find the exact center

of each particle, it is desirable to have larger particle image

diameters for particle identification algorithm to reduce the

peak location error, as suggested by Mikheev and Zubtsov

(2008). However, larger diameters cause more particle

image overlaps beyond the range of those shown in Fig. 4,

which make particle identification more difficult. There-

fore, a trade-off is necessary to maximize on accurate

particle identification. To determine this, a moving wall

Fig. 9 a RMS error and b percent yield and reliability versus flow gradient for uniform shearing flow. Flows containing maximum

displacements of ±7 and ±25 pixels are compared. The PTV matching is guided both by PIV and exact analytic solutions

Table 3 Effect of particle image density on PTV results

Particle

image density

Particle

found

Particle

yield (%)

Matches

found

Match yield with 1-pixel

tolerance (%)

Reliability with 1-pixel

tolerance (%)

Reliability with 0.5-

pixels tolerance (%)

RMSE

(pixels)

0.06 4,332 58.6 4,021 91.3 98.3 93.4 0.376

0.03 2,865 75.7 2,820 98.1 99.6 98.9 0.111

0.01 1,121 92.1 1,116 99.5 99.9 99.8 0.042
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flow with a particle image density of 0.03 is used to test the

effect of different particle diameters, since the reliability at

this density is around 99 % (see Table 3) while particles

are not too sparsely distributed. Results are shown in

Table 4. Reliability values within 0.5-pixels tolerance for

these tests are above 95 % for 4 and 5 pixel diameters.

With a 7 pixel particle diameter, the reliability with

0.5-pixels tolerance drops to 86 % due to more severe

particle overlapping. Particle yield also decreases with

increasing particle diameter due to more irresolvable par-

ticle overlapping. For all three cases, the PTV reliabilities

with a 1-pixel tolerance are above 96 %.

In all previous synthetic images, particle images were

created using a constant peak intensity (i.e., they were

illuminated within a light sheet that had a top hat intensity

profile). In order to more closely model experimental

images, the peak intensity and diameter are randomized.

The intensities are distributed about a mean of 175 with a

standard deviation of 25. The diameters are distributed

about a mean of 4 pixels with a standard deviation of 0.57

pixels. We can see that this randomization degrades the

PTV performance and raises the error to 0.26 pixels or

twice the error for uniform particle images with 4 pixel

diameters. Even though the CCM algorithm can distinguish

overlapped particles, it can be seen that smaller particle

images are desirable for optimum performance with this

PTV method.

4.5 VSJ standard PIV images

The proposed algorithm is applied to the standard PIV

images from the Visualization Society of Japan (VSJ). The

images used in the present work is from series #301, which

is generated based on 3-D large-eddy-simulation (LES) of

a two dimensional planar jet impinges on the wall

(Okamoto et al. 2000). The synthetic 256 9 256 image

pair contains about 4,000 particle pairs with a maximum

displacement of 10 pixels. The particle images have a mean

diameter of 5 pixels, and the standard deviation is 1.4

pixels. These images have been used by many other

researchers (Ohmi and Li 2000; Ruhnau et al. 2005;

Mikheev and Zubtsov 2008; Shindler et al. 2011; Brevis

et al. 2011), so it is an ideal subject for testing and com-

parison purposes.

Similarly to the analytical 2-D flow tests in the previous

sections, the test performed here is divided into two parts

Fig. 10 a RMS error, b match yield and reliability versus particle image density

Table 4 Effect of particle image diameter and intensity on PTV results

Particle diameter Particle

found

Particle

yield (%)

Matches

found

Match yield with

1-pixel tolerance (%)

Reliability with

1-pixel tolerance (%)

Reliability with 0.5-

pixels tolerance (%)

RMS

(pixels)

4 2,865 75.7 2,820 98.1 99.6 98.9 0.112

5 2,689 71.0 2,585 94.9 98.8 95.4 0.218

7 2,412 63.7 2,090 83.5 96.3 85.9 0.391

Random intensity

and diameter

2,792 73.8 2,620 92.6 98.7 93.0 0.259
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using known and unknown particle locations. The image

pair used is image 0 and image 1 of the #301 series with

4,042 matchable pairs. In the known particle location test,

out of 4,039 pairs found by the matching algorithm, 3,927

of them are correct vectors. This result gives a yield and

reliability of 97.15 and 97.23 %, respectively. Since the

mean diameter of the particles in the image is only 5 pixels,

for the unknown particle test, the particle mask radius is set

to 1 pixel. The matching algorithm parameter setting is the

same as the previous tests. In the unknown particle location

test, the particle identification algorithm found 2,097 and

2,095 particles from the image pair. From these data, the

matching algorithm matched 1,846 pairs, and 1,761 of

them are considered correct within a 1 pixel tolerance. This

result gives a match yield and reliability of 84.06 and

95.40 %, respectively. These test results together with the

results from several other researchers are shown in Table 5.

For the known particle location test, the current matching

algorithm has a match yield only slightly lower than the

ICCRM algorithm (Brevis et al. 2011) and similar reli-

ability percentages among the compared algorithms. The

best two results in the known particle location test—the

present work and ICCRM algorithm—are both methods

utilizing a cross-correlation algorithm to help the tracking

results. Compared to other work, the addition of a cross-

correlation algorithm improves the tracking performance

for the low particle density areas because it provides

additional data other than the particle locations and thus

increases the reliability of the results at these areas. In the

present work, the cross-correlation algorithm is added as an

additional term in the proximity matrix, and the weighting

is auto-adaptive. In the ICCRM algorithm, the cross-cor-

relation method is the preprocessing stage of the relaxation

method, and the weighting is controlled by the correlation

threshold level, which is manually selected by the user. For

the unknown particle location test, the match yield and

reliability of the present work are slightly lower than those

of the other algorithms, nevertheless the number of found

and matched particles are the highest among all the

algorithms.

This unknown particle location result suggests that the

particle identification algorithm does not perform very well

on these images, yet this can be explained with the fol-

lowing two causes. The first reason is that the particle mask

radius has to be set to 1 pixel in order to accurately find the

particles in these VSJ#301 images, because the mean

particle image diameter is set to 4 pixels. Under this con-

dition, the particle mask radius cannot be reduced anymore,

limiting the correlation operation to only perform once.

Thus, the CCM algorithm is reduced to a normal PMCM

algorithm, which reduces the ability to resolve overlapping

particles. The second reason is that the VSJ #301 image

does not sum all the intensities for each pixel from each

of the overlapping particles, but instead uses only the

intensities of the brightest particle. Okamoto et al. (2000)

generate VSJ standard PIV images this way because they

believe occlusions occur when particle images overlap one

another. This may not be practical in some cases, however,

since multi-scattering may occur, and a particle image is

not only formed by direct illumination but also due to

fractions of light scattered from other particles (Raffel et al.

1998). The particle image diameter ds can be approximated

by the formula (Raffel et al. 1998)

ds ¼ c M2d2
p þ d2

s

� �1=2

ð14Þ

where M is the magnification of the lens system, dp is the

actual particle diameter, ds is the diffraction limited spot

size defined as follow

ds ¼ 2:44ð1þM2Þf #k ð15Þ

where f# is the f number defined as the ratio between the

focal length and the aperture diameter of the lens, and k is

the wavelength of illuminating light. In general, ds is more

Table 5 PTV results with known/unknown particle location and comparison to previous work of VSJ 301 image

Algorithm Particle

location

Matches

possible

Matches

found

Matches

correct

Match yield

(%)

Reliability

(%)

Present work (tracking only) Known 4,042 4,039 3,927 97.23 97.15

VAR (Ruhnau et al. 2005) Known 4,042 4,039 3,894 96.34 96.41

EPTV (Mikheev and Zubtsov 2008) Known 4,042 3,863 3,823 94.58 98.96

ICCRM (Brevis et al. 2011) Known 4,042 NA 3,980 98.46 NA

Present work (particle

identification ? tracking)

Unknown 2,095 1,846 1,761 84.06 95.40

EPTV (Mikheev and Zubtsov 2008) Unknown 2,029 1,759 1,733 85.41 98.52

VAR (Ruhnau et al. 2005) Unknown NA 872 865 NA 99.20

NRX (Ohmi and Li 2000) Unknown NA 808 788 NA 97.52

MF-EPS (Shindler et al. 2011) Unknown NA 1,160 1,146 NA 98.80

2F-EPS (Shindler et al. 2011) Unknown NA 1,123 1,112 NA 99.00
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dominated by diffraction effects with smaller particles and

more dominated by geometric optics when particles are

larger. Thus, in the case of small particles, occlusion may

be less of an issue and Okamoto’s model may not recon-

struct the overlapped particle image very well. To verify

this, an experimental image of overlapping particles is

examined and reconstructed with the current particle

identification method as shown in Fig. 11a, b. The cross-

sectional profiles of the 6th row of the actual image and

the reconstructed images are shown in Fig. 11c. The

overlapping region in the middle of the two particles is

underestimated by the occlusion assumption, while the

proposed method predicts the profile more accurately.

Since the optics assumption used in the present work is

different than that used in VSJ standard PIV image gen-

eration, the results reflect this difference as higher location

error and eventually lower matching performance. In spite

of the issues mentioned above, results from the current

method are comparable to other methods and show a higher

number of found and matched particles, as seen in Table 5.

4.6 Experimental images

The present algorithm was applied to an experimentally

obtained shear layer image set. The area viewed was 22 cm

by 22 cm, with flow velocities of 10.5 and 22.5 cm/s and a
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Fig. 11 Comparison of particle image reconstruction performance based on different assumptions. a Original image, b reconstructed image by

current work, c comparison of profiles of the 6th row

Fig. 12 Shear layer flow field

with average of free stream

velocity subtracted
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Reynolds number, based on a visual shear layer thickness

of 1.2 9 104. The apparatus and details of the flow in

question are described in Dabiri (2003). The resulting

vector field is shown in Fig. 12. The average of the free

stream velocities (16.5 cm/s) is subtracted from all the

vectors in order to better show the flow structures. The

particle identification algorithm found 12,429 and 12,143

particles in frames 1 and 2, respectively. A total of 7,777

matches were found, resulting in a match yield of 64.0 %.

This is lower than the results from synthetic images with

random particle sizes and intensities (92.6 %; see Table 4).

The reason for this lies in the large number of particles

passing through the laser sheet in the experimental flow,

which appear in only one of the images. To check the effect

of these rogue particles on matching results, synthetic

images were generated with similar particle image char-

acteristics as the experimental images and particle images

were deleted and replaced with randomly located particle

images to simulate particles moving into and out of an

experimental laser sheet. The results of running the particle

identification and matching algorithms on these images

demonstrated a linear relationship between the percentage

of rogue particle images and the match yield, that is, when

10 % of particle locations were randomized, a roughly

10 % drop in match yield was observed; when 20 % of

particle locations were randomized, the match yield drop-

ped by 20 %, and so on.

As an additional check on the current algorithm’s ability

to process experimental data, images were collected from a

uniform flow in a water tunnel with very few observable

out of plane losses. The flow velocity was 50.0 cm/s, the

area viewed was 29 by 29 mm with a magnification

of 0.22, and flow was seeded with 44 micron particles.

The match yield was 85.2 %, which is similar to the syn-

thetic images with random particle intensity and diameter

(92.6 %). These results suggest that the low match yield for

the shear layer images is indeed due to out of plane losses

and that the current algorithm is capable of processing real

images.

4.7 Sources of error

Two main sources of error tend to affect the known and

unknown particle location tests. The first is the result of

particle pairs or triads which cross one another. Even with

slightly larger separation, the matching algorithm has dif-

ficulty in correctly choosing which particles in the first and

second images are matches. These crossed vectors can

account for as many as half of erroneous matches (those

with an error [1 pixel). An outlier detection algorithm is

applied to matching results, but is also unlikely to detect

these crossed vectors as they do not often deviate seriously

from the surrounding flow field. An example is shown in

Fig. 13a. A simple routine is used to detect these crossed

vectors and either remove or correct them. This resulted in

reducing the RMS errors, on average, by 16 %

In addition to crossed matches, when the particle loca-

tion identification method is used, the primary source of

unreliable matches lies in the ability to accurately locate

the peaks of overlapping particles. In high density images

in particular, a particle blob can easily contain four or more

particles. Small changes in relative locations among these

particles from one image to the next can alter the results of

particle location identification from one frame to the next

and sometimes results in a poor representation of flow

behavior. An example is shown in Fig. 13b.

Fig. 13 a Example of error due to crossed matches. b Errors caused by peak finding inaccuracy. Plot shows 5 pairs of exact particle peak
locations and 3 pairs of peaks resolved by the particle location identification algorithm (particle diameter of 4 pixels)
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5 Conclusion

In conclusion, a novel technique for PTV is proposed and

tested focus on dealing with larger and severely overlapped

particle image field. An improved particle identification

algorithm using both CCM and 2-D surface Gaussian fit-

ting is developed to improve the yield of identifying

overlapping particles. Particle matching based on vision

principles is used with guiding PIV technique to provide

accurate and robust particle tracking. Synthetic image tests

showed that particle overlap can be resolved up to a 60 %

overlap at noise levels of 5 % or less, and the velocity

profile of a moving wall flow reconstructed is in good

agreement with the analytic solution. Sensitivity tests were

performed to describe optimum conditions for the use of

this PTV algorithm. The best results were obtained with

particle densities with particle overlap up to 50 %, small

particle image diameters, and pixel per pixel gradients up

to 0.3. The algorithm was also tested with standard VSJ

PIV images, and the results were compared with other

published works. The current method compared favorably

with existing PTV methods with known particle locations.

The slightly lower reliability of matches obtained using the

particle location algorithm was attributed to the construc-

tion of the artificial VSJ images. Experimental images of a

shear layer with a particle image density 0.02 were tested,

and a match yield of 63.8 % was obtained.
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